New Results from BNL E949 $K^+ \rightarrow \pi^+ \gamma \gamma$ and $\pi^0 \rightarrow \nu \ \bar{\nu}$ Peter S. Cooper Fermi National Accelerator Laboratory (for the BNL E949 collaboration) ### **E949 Collaboration** Available online at www.sciencedirect.com PHYSICS LETTERS B Physics Letters B 623 (2005) 192-199 www.elsevier.com/locate/physletb Search for the decay $K^+ \to \pi^+ \gamma \gamma$ in the π^+ momentum region P > 213 MeV/c #### E949 Collaboration A.V. Artamonov ^a, B. Bassalleck ^b, B. Bhuyan ^{c,1}, E.W. Blackmore ^d, D.A. Bryman ^e, S. Chen ^{d,2}, I.-H. Chiang ^c, I.-A. Christidi ^f, P.S. Cooper ^g, M.V. Diwan ^c, J.S. Frank ^c, T. Fujiwara ^h, J. Hu ^d, D.E. Jaffe ^c, S. Kabe ⁱ, S.H. Kettell ^c, M.M. Khabibullin ^j, A.N. Khotjantsev ^j, P. Kitching ^{k,3}, M. Kobayashi ⁱ, T.K. Komatsubara ^{i,*}, A. Konaka ^d, A.P. Kozhevnikov ^a, Yu.G. Kudenko ^j, A. Kushnirenko ^{g,4}, L.G. Landsberg ^a, B. Lewis ^b, K.K. Li ^c, L.S. Littenberg ^c, J.A. Macdonald ^{d,*}, J. Mildenberger ^d, O.V. Mineev ^j, M. Miyajima ¹, K. Mizouchi ^h, V.A. Mukhin ^a, N. Muramatsu ^m, T. Nakano ^m, M. Nomachi ⁿ, T. Nomura ^h, T. Numao ^d, V.F. Obraztsov ^a, K. Omata ⁱ, D.I. Patalakha ^a, S.V. Petrenko ^a, R. Poutissou ^d, E.J. Ramberg ^g, G. Redlinger ^c, T. Sato ⁱ, T. Sekiguchi ⁱ, T. Shinkawa ^o, R.C. Strand ^c, S. Sugimoto ⁱ, Y. Tamagawa ¹, R. Tschirhart ^g, T. Tsunemi ^{i,5}, D.V. Vavilov ^a, B. Viren ^c, N.V. Yershov ^j, Y. Yoshimura ⁱ, T. Yoshioka ^{i,6} a Institute for High Energy Physics, Protvino 142 280, Moscow Region, Russia b Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA c Brookhaven National Laboratory, Upton, NY 11973, USA d TRIUMF, 4004 Wesbrook Mail, Vancouver, British Columbia, Canada V6T 2A3 e Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 121 f Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA 8 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA h Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan i High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801, Japan j Institute for Nuclear Research, University of Alberta, Edmonton, Canada T6G 2N5 h Department of Applied Physics, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan m Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 560-0043, Japan h Laboratory of Nuclear Studies, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan O Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan E787/E949 was designed primarily to observe the rare kaon decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$, but other rare modes are accessible, particularly those involving photons - Incoming beam (~700 MeV/c) tagged by Cerenkov, dE/dx counters - Stopped kaon beam. Wait ~2ns for K decay (reject beam π). High geometrical acceptance. - K decay-products momentum analyzed in 10 kG B field. - Stopped decay pion. Measurement of particle range and energy. Observation of $\pi \to \mu \to e$ decay sequence for μ rejection. - Photon detectors surround everything (E949 PV upgrades shown in blue). ### E787 / E949 Data Taking Summary This plot is for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ triggers but gives a rough idea of the kaon exposure. Recall, E949 ran for 12 weeks in 2002 (out of 60 weeks approved) and has not run since then. #### 2002 run: - AGS main power supply problem. 20% worse duty cycle cf. E787 Lower p momentum ⇒ ~10% loss in K flux - K/π separator problems ## $K^+ \rightarrow \pi^+ \gamma \gamma$ Introduction At O(p⁴) in ChPT, BR(K⁺ \rightarrow π ⁺ γ γ) and spectrum shape depend on a single parameter, \hat{c} So-called "unitarity corrections" (UC) dominate at the next order (O(p6)) • E787 analysis had a slight preference for UC, but not conclusive Effect of UC is most dramatic at the π^+ kinematic endpoint (low M($\gamma\gamma$)) • E949 focused on this region #### New in E949 - Better trigger, no online prescale! - Thicker, brighter barrel photon detector | <u>K exposure</u> | # of triggers | | |---|--|--| |
3.1 x 10 ¹⁰
1.19 x 10 ¹² | 7.3 × 10 ⁵
1.1 × 10 ⁷ | | # $K^+ \rightarrow \pi^+ \gamma \gamma$ in Chiral Perturbation Theory leading contribution at $O(p^4)$ undetermined coupling-constant \hat{c} NLO contribution at $O(p^6)$ • "unitarity" corrections with \hat{c} - ullet Vector-Meson exchange negligible in ${ m K}^+ o \pi^+ \gamma \gamma$ important in ${ m K}_L^0 o \pi^0 \gamma \gamma$ (a_v) - other new dynamics ?? ## $K^+ \rightarrow \pi^+ \gamma \gamma$ Offline Analysis ### Backgrounds: $$K^+ \rightarrow \pi^+ \pi^0 (K\pi 2)$$ - π⁺ kinematics measured - Photon energies/angles mis-measured - Or photon overlaps charged track #### $K\pi 2$ with K Decay In Flight (DIF) - π⁺ Kinematics measured - Fakes K decay at rest #### $K^+ \rightarrow \mu^+ \nu \gamma$, $\pi^0 \mu^+ \nu \gamma$ or $K\pi 2$ with π DIF - μ⁺ kinematics measured - $\pi \to \mu \to e$ decay sequence fooled #### Two beam particles Suppressed with good segmentation and timing in the K tracking system ### Backgrounds, Acceptance, Sensitivity ### Backgrounds $K\pi 2$ **Overlapping Photon** Muon K decay in flight Two Beam Total #### Number of Events 0.017 ± 0.006 0.065 ± 0.065 0.090 ± 0.020 0.025 ± 0.014 <0.006 (90%CL) 0.197 ± 0.070 | | including unitarity corrections | without the corrections | | |---|----------------------------------|----------------------------------|--| | | $\hat{c}=1.8$ | $\hat{c}=1.6$ | | | Total acceptance | $(2.99 \pm 0.07) imes 10^{-4}$ | $(1.10 \pm 0.04) \times 10^{-4}$ | | | $(P_{\pi^+}~>~213~{ m MeV}/c)$ | | | | | N_K | 1.19×10^{12} | | | | K^\pm stopping efficiency | 0.754 ± 0.024 | | | | $(\mathrm{K}_{\pi 2}$ decays in the trigger $)$ | | | | | Single Event Sensitivity | $(3.72 \pm 0.14) \times 10^{-9}$ | $(10.1 \pm 0.5) \times 10^{-9}$ | | | predicted branching ratio | 6.10×10^{-9} | 0.49×10^{-9} | | | $(P_{\pi^+}~>~213~{ m MeV}/c)$ | | | | | expectation | 1.6 events | 0.05 events | | ## $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \gamma$ results Blind analyses. No events seen in signal boxes Br(K⁺ $$\rightarrow \pi^+ \gamma \gamma$$) < 8.3 x 10⁻⁹ (90%CL) $p(\pi) > 213$ MeV/c Assuming spectrum from ChPT with unitarity corrections (c = 1.8) Factor of 8 sensitivity improvement over E787; but, cannot confirm or rule of unitarity corrections. With a full 60 week run we would have been x10 more sensitive. Same data set is used to search for $K^+ \rightarrow \pi^+ \gamma$ which *only* violates angular momentum conservation and gauge invariance $Br(K^+ \rightarrow \pi^+ \gamma) < 2.3 \times 10^{-9} (90\%CL)$ Factor of 160 improvement over E787 $$\pi^0 \rightarrow \nu \ \bar{\nu}$$ Forbidden by angular momentum conservation if W's and neutrinos are purely left handed. Can proceed if neutrinos have mass. $$Br(\pi^0 \to \nu \ \overline{\nu}) < 1.1 \times 10^{-9} \text{ for } m(\nu_\tau) < 18.2 \text{ MeV/c}^2$$ Best previous limit comes from E787 $$Br(\pi^0 \to \nu \ \overline{\nu}) < 8.3 \times 10^{-7} (90\%CL)$$ Method: Copious supply of clean π^0 from $K^+ \rightarrow \pi^+ \pi^0$ tagged by monochromatic π^+ . Look for $K\pi 2$ events with no activity other than K^+ and π^+ . Trigger sample is same as $K^+ \rightarrow \pi^+ \nu \bar{\nu}$. Select $K\pi 2$ events; apply tightest photon veto. Tune photon veto on 1/3 of data, use other 2/3 for search. # $\pi^0 \rightarrow \nu \ \bar{\nu} \ \pi^0$ Rejection 99 events survive all cuts ### $\pi^0 \rightarrow \nu \ \bar{\nu}$ Results - 99 events remain after all photon veto cuts - We presume these to be $\pi^0 \rightarrow \gamma \gamma$ with undetected photons - The e949 photon veto inefficiency in not known and probably not knowable at this level. - A background subtraction is not a reasonable option. - The corresponding branching ratio upper limit is: $$Br(\pi^0 \to \nu \ \bar{\nu}) < 2.7 \times 10^{-7} (90\%CL)$$ Factor of 3 improvement beyond E787 #### Conclusions Present E949 results Br(K⁺ $$\to \pi^+ \nu \ \bar{\nu}) = (1.5 \ ^{+1.3}_{-0.9}) \ x \ 10^{-10} \ [3 \ events, E787(2) + E949(1)]$$ Br(K⁺ $\to \pi^+ \gamma \gamma$) < 8.3 x 10⁻⁹ (90%CL) p(π) > 213 MeV/c Br(K⁺ $\to \pi^+ \gamma$) < 2.3 x 10⁻⁹ (90%CL) Br($\pi^0 \to \nu \ \bar{\nu}$) < 2.7 x 10⁻⁷ (90%CL) - Expected new E949 Results - $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ from region below Kp2 peak - Further Progress in ultra-rare Kaon decays Not in the US, P326(Cern), Jparc(Japan) #### References $$K^+ \rightarrow \pi^+ \gamma \gamma$$, $K^+ \rightarrow \pi^+ \gamma$ T. Yoshioka, Univ. of Tokyo thesis, KEK K-decay Report 2005-2, Hep-ex/0505069, Phys.Lett.B 623 (2005) 192-199 $\pi^0 \rightarrow \nu \ \bar{\nu}$ K.Mizouchi, Kyoto Uinv. Thesis (in preparation), hep-ex/0506028, submitted to Phys.Rev.D. Rapid Communications